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Abstract

This course is meant as a practical mathematical guide for researchers and practitioners wilim@r® wxplore the new frontiers of 3D shape analysis,
and thus require to manage the rather complex mathematical tools most metlyoals. réhe target audience includes therefore academia as well as industries
or companies active in the shape analysis area. The attendees will familiarizZeasithconcepts in Differential Geometry, and proceed to advanced notions of
Algebraic Topology, always keeping an eye on computational counterpartstt€nelees will be shown how these notions can be transferred to practical slution
through examples of applications to shape correspondence, symmetry detectishape retrieval.

The main reason for proposing a comprehensive (yet concise) mathematical ghateistimber of research solutions come from advances in pure and applied
Mathematics, as well as from the re-reading of classical theories and their adaptatiedigrtete setting. Being able to manage such complex mathematical tools
is key to understanding and orienting among the growing number of differepbsals. In a world where disciplines (fortunately) have blurred boundarees, w
also believe this guide will give some advice on how to make matheraasicother scientists and practitioners get along well with each other, thatnigphalk
to each other — and get tmderstandeach other. We hope that, at the end of the course, attendees will have an ideatorfihd the right mathematical tools that
match a bright intuitive idea, and how to strike a balance between being tlvadiyetigorous and offering computationally feasible solutions... pos&ieping
our guide on their desks.

The course is structured as a half-day course. We assume the participants hawkilissic Geometric Modelling and familiarity with basic concepts in
Mathematics.

1 About the Lecturers

Silvia Biasotti: Silvia Biasotti is a researcher at at the Institute of Applied Mathematics &ndration Technologies (IMATI) of the
National Research Council (CNR) of Italy, Research Unit of Genderer she works in the Shape Modelling group. She got a Laurea
degree in Mathematics in September 1998 from the University of Getowday 2004 she got a a PhD in Mathematics and Applications
and in April 2008 a PhD in Information and Communication Technologie#) from the University of Genoa. She authored more than 80
scientific peer-reviewed contributions, is a member of the editorial bof@i®@RN Machine Vision and served in the programme committee
of SMI06-SMI11. Her research interests include the study of topolégeametrical descriptions of 2D and 3D models and the development
of geometric reasoning techniques for the extraction of shape fedtaresliscrete surface models. In the last years, her researchsigtere
concerned computational topology techniques for the analysis antLsingoof geometric information in any dimension, and shape similarity
based on similarity between structures. She is also the proponent aaddé#ite CNR activityTopology and Homology for analysing digital
shapesand teaches the Master couldethods of analysis of discrete surfaces and their applicatairise Dept. of Mathematics, University

of Genoa.

Bianca Falcidieno Bianca Falcidieno is a Research Director at the Institute of Applied Mathesraatitinformation Technologies (IMATI)

of the National Research Council (CNR) of Italy. She is the Respongibliaé Genova branch of IMATI (RUOS) and the President of the
CNR Research Area of Genova. She has been leading and coordireg@aych at international level in advanced and interdisciplinary
fields, including Computational Mathematics, Computer Graphics, Multidéineal Media and Knowledge Technologies. She coordinated
various international and national projects, including the EU Network oélisnce AIM@ SHAPE (2004-2008), the EU Coordination Action
FOCUS K3D (2008-2010), the Italy-Israel project FIRB SHALOM @892009). Bianca Falcidieno is the author of over 200 scientific
refereed papers and books. She was in charge of several intealatonmitments, including editorial tasks and the chairing or co-chairing
of events such as the IEEE Conference on Shape Modeling Interna8vig France 2010) and the Conference on Semantics and digital
Media Technology (SAMT, Italy 2007). She is the editor in chief of the imaional Journal of Shape Modelling (World Scientific). In her
training activity, she supervised several researchers, while takimegpf¢he guidance and training of PhD and master students, both Italians
and foreigners, by teaching courses and supervising theses atmlad@ctivities, both in Italy and abroad, on Applied Mathematics and
Information Technologies. For the 80th CNR anniversary, she wésded in the 12 top-level female researchers in the CNR history. In
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2011 Bianca Falcidieno was elected to a Fellowship of the EUROGRAPHIG8ci&tion in recognition of her scientific contribution to the
advancement of Computer Graphics.

Daniela Giorgi: Daniela Giorgi graduated cum laude in Mathematics at the University ofgBalan 2002, with a thesis on geometric
modelling of curves and surfaces; she then got a PhD in Computaticethlelhatics from the University of Padova in 2006, with a thesis
on image and 3D model retrieval. She joined the Centre of Excellence SRiCBologna and then moved to Genova, where she joined the
Shape Modeling Group at IMATI-CNR as a researcher. Her distinqugdleatures are strong mathematical expertise (Differential Geometry,
Morse theory, Topology) together with in-depth knowledge in ICT andmaational fields (Computer Graphics, Image and 3D Processing).
Her main research interests concern multimedia analysis, descriptiomimietal. She has been developing . She is the author of over 30
peer-reviewed international publications in high-level journals, bookiscanferences, about computational geometry and topology tools for
shape analysis, description, and retrieval. She participated in seati@ial and international research projects, and was in charge of the
Watertight Models Track (2007) and of the Classification of Watertight &lod@rack (2008) of the SHREC event (SHape REtrieval Contest).
She has been teaching BS (Engineering) and Master (Mathematics amplisadions) courses at University; she has supervised trainees,
undergraduates and master students, thus achieving education aviddgetransfer competency. She also was a lecturer at International
Schools.

Michela Spagnuolo: Michela Spagnuolo got a Laurea Degree cum laude in Applied Mathematitsthe University of Genova and a
PhD in Computer Science Engineering from the INSA, Lyon. She is otlyra Senior Researcher at CNR-IMATI. She authored more than
130 reviewed papers in scientific journals and international confeseadéed a book on 3D shape analysis, and was a guest-editor oflsevera
special issues. She is an associate editor of Computers&GraphicpuBarsraphics Forum and The Visual Computer. She is a member of
the steering committee of the IEEE Shape Modelling International (SMd) waas the programme chair of the EG and ACM workshops on
3D Object Retrieval (3DOR) and the International Conference on 8terend Media Technology (SAMT). Her current interests include 3D
modelling and visualization, shape analysis techniques, shape similarityatoting, and computational topology. She was responsible for
several EC and national projects of CNR-IMATI and is currently resjide for the research unit @xdvanced techniques for the analysis and
synthesis of multidimensional mediad for the research unit on Modeling and analysis techniques, angdiffirmance and grid omputing

of a CNR Project on Bioinformatics.

2 Course Outline

MODULE 1: Moderator: Bianca Falcidieno
Lecturers: Michela Spagnuolo, Silvia Biasotti.

A. Introduction and welcome. (14:00-14:05)
e Overview of the course and motivation.
B. Mathematics and shape analysis challenges. (14.05-14.20)
e Shape properties and invariants;
e Similarity between shapes.
C.Mathematical Guide, Part 1. (14.20-15.00)
e Topological spaces, functions, manifolds, metric spaces;
e |sometries, geodesics, curvature, Riemann surfaces, LapldtrarBieoperator;
e Gromov-Hausdorff distances.
D. Examples of Applications, Part 1. (15.00-15.30)
e surface correspondence;
e symmetry detection;
e intrinsic shape description.
Break (15.30-15.40)

MODULE 2: Moderator: Michela Spagnuolo
Lecturers: Daniela Giorgi, Bianca Falcidieno.

E. Mathematical Guide, Part 2. (15.40-16.20)
e Basics on algebraic topology, simplicial Complexes, Homology, sujaoes;
e Critical points, Morse Theory.

F. Examples of Applications, Part 2. (16.20-16.50)

e Persistent topology;



e Reeb graphs.
G. Conclusions (16.50-17.15)

e Discussion on recent trends and open issues, supported by cass.stud

3 Introduction

In the last decade we have witnessed great interest and a wealth aserion8D shape analysis, where the goal is to derive geometric,
structural and semantic information about 3D objects from low-levgbgnties. While the first half of the decade can be thought of as the
initial phase of research, which only laid foundation to such promise git@nsl half saw a large number of new techniques and systems, and
got many new people involved. The community has started to reasorwoohadienges, including similarity under deformations other than
rigid motions, partial matching, correspondence finding, symmetrytiete view-point selection, semantic annotation and attribute transfer.
Lateral evolution has also occurred in terms of the associated appliegimmapanning various fields from Medicine to Bioinformatics and
Architecture.

These new challenges required more elaborate methods: a numbtare$iimg solutions came from advances in (pure and applied) Mathe-
matics, as well as from the re-reading of classical mathematical themitheir adaptation to the discrete setting. Being able to manage such
complex mathematical tools is key to understanding the most recentglesedutions, and orienting among the growing number of different
proposals. In this scenario, this course is meant as a practical guideniigafize with most of the mathematical concepts and computa-
tional tools that are used in recent work on the analysis of 3D objects, fasic concepts in Differential Geometry to notions of Algebraic
Topology. The course includes a summary of the background mativai@otions, a detailed presentation of the mathematical methods
underlying recent shape analysis works, and examples of applicéichspe correspondence, symmetry detection, shape compargon an
retrieval.

3.1 Overview of the Course Material

The course is structured as a half-day course. The fist part integdiene of the main challenges in shape analysis, underlining the key role
that Mathematics plays. Then, the first part of the mathematical guideseped, dealing with concepts mainly in Differential Geometry
and Topology; examples are shown about surface correspom@eacsymmetry detection, to demonstrate how the surveyed mathematical
concepts have been exploited in recent research works.

In the second part, the mathematical guide is completed with advanceeptsriic Differential Geometry and Algebraic Topology, whose
use is demonstrated in shape comparison and retrieval applicationg dortbluding part, we will draw some conclusions about the use of
Mathematics in shape analysis: with the help of case studies, possibly takeretent shape analysis contests (e.g., the SHREC 2012 Track
on Stability on Abstract Shapes), we shall reason about to what extexst ieached his full potential, and what still has to be done.

The course material is partly based on previously published papesatadkiectures by the authors. These include:

e the papers published in ACM Computing SurveBsagotti et al. 2008pand in Theoretical Computer Sciend®igsotti et al. 2008c
about geometrical-topological tools for shape analysis and descriptltoh covered mathematical, computational and applicative
aspects, and both received a good appreciation from the reseanchucuty;

e the tutorial presented at EUROGRAPHICS 20BT7ajotti et al. 200F, about shape comparison and retrieval methods rooted in Morse
Theory;

e the MiniSymposiunmGeometric-topological methods for 3D shape classification and matchéeid at ICIAM (International Council
for Industrial and Applied Mathematics) 2007;

e lectures given at international schools (AIM@SHAPE Internationali@anschool on Computational Methods for Shape Modelling
and Analysis - 2004; AIM@SHAPE International Summer School orp8idodeling and Reasoning - 2007; Utrecht Summer School
on Multimedia Retrieval - 2007; Seminar on Non-Textual Data Searchistegs (http://diuf.unifr.ch/diva/3emeCycle08) - 2008) and
at national events (DIMA Workshodatematica, Forme, Immagiri2010).

The tutorial will also reflect the many years’ experience of organizieggdROGRAPHICS workshop on 3D Object Retrieval (EG 3DOR),
and the launching and contributions to the SHape REtrieval Contest (SHRE@Gched by the AIM@SHAPE project in 2006, SHREC
has seen an increasing participation of researchers, and evolvednmtibi-@ontest featuring diverse tracks on 3D retrieval, corresparelen
finding, shape segmentation and related topics (http://www.aimatshapeen&&REC). This experience will allow us to demonstrate and
benchmark recent results, and not just to describe them theoretically.

3.2 Educational Role

The notes are mostly aimed at researchers who are willing to explorevihgargiers of 3D shape analysis, and thus require to manage the
rather complex mathematical tools which most methods rely on. We agbaintae participants have basic skills in Geometric Modelling,
and familiarity with basic concepts in Mathematics. The educational targethgiaus, in that it requires to strike an happy medium between
complex (and vast) mathematical theories, computational aspectsraoital issues. Our mission is to offer a comprehensive yet concise
mathematical guide, which can help a new generation of researchetdytatiderstand what is behind the most recent solutions in shape
analysis.



Figure 1. Mathematics, shapes, invariants and descriptors.

Previous SIGGRAPH courses covered topics in Mathematics and Diddetteematics (including the 2006 course on Discrete Differential
Geometry: An applied introduction; Surface Modeling and ParametrizatitmManifolds, and Manifolds and modeling - 2005; Geometric
signal processing on large polygonal meshes - 2001), but a cbemsi®e course collecting the mathematical background pertaining to
different fields in advanced shape analysis, and spanning fronsbadiifferential Geometry to Algebraic Topology, has not been proghose
yet. Moreover, existing surveys on shape analySanfelder and Veltkamp 2008an Kaick et al. 201]ldo not cover the Mathematics
behind the research solutions surveyed. We believe it timely to fill the gaywiait this complex material, with the aim of helping a good
understanding of novel, complex research solutions, and their transfgractical applications.

4 Contents

In many problems in Computer Graphics, it is convenient to model shap¢opological spaces, possibly manifolds; often, shape data are
endowed with a notion of distance between their points, which turns them, ilargeage of Differential Geometry, into metric spaces.
Capturing the information contained in shape data thus typically takes theofaramputing shape properties, and turning them into invari-
ants, or signatures, which provide insights about the shape chartcsedeasuring shape properties (distances between points, curvature
etc.) and getting invariants is a fundamental problem in Computer Grapftiish has applications to correspondence finding, symmetry
detection, and more.

A more elaborate question concerns the definition of distances betwapesshindeed, one of the cornerstone problems in shape analysis is
how to define a notion of shape (dis)similarity; that is, we may want to aedtyzvhat extent two spaces represent two instances of some
common class, up to a certain notion of invariance. Having defined apragion of distances between shapes, it is natural to ask for
shape descriptors which are able to signal shape (dis)similarity in aoomedvith this definition. This has fundamental applications in shape
matching, recognition and retrieval.

In what follows, we expand on these challenges, point out why (arat)Whathematics is needed to make our way through complex shape
analysis problems, and list the concepts we will present in our tutorial.

4.1 Computing 3D shape properties and metric invariants

When we think about shape properties, the first distinction to be made isde®xtrinsic and intrinsic shape propertigéstrinsicproperties

are the properties related to how the shape is laid out in the Euclidean 3® $pae model a shape aswetric spaceits extrinsic properties

can be described by using the Euclidean distance between points. Endid&mnces form the basis for most of the earliest shape analysis
methods in Computer Vision and Computer Graphics. At the same time, lagebtuby ofintrinsic properties, that is, properties related

to the metric structure and invariant to shape deformations, started g@mgpinto the Vision and Graphics communities. The reason is

that deformable objects are ubiquitous in our reality, from human ongalnsng beings. If a shape is modeled as a metric space, intrinsic



properties can be described uspdesic distancewhich, on a surface, measure the length of the shortest path alongrfaessbetween
two points. The use of geodesic distances proved effective in a nuofilstudies, and paved the road to a number of tools for intrinsic
non-rigid shape analysis. Recent developments include the introdudtimizay geodesi¢csvhich relax the notion of shortest path so as
to increase robustnesdiffusion distancegand related notions such béharmonic distanceand theheat kerné), which are related to the
physical process of heat diffusion on a surface from a source;paimer distancesand interior distancesto be computed on volumes.
Concerning surface properties and invariants, a fundamental pbisctie Gaussian curvaturewith the peculiarity that it depends on the
metric defined on the space (different metrics induce different tunes), whereas the total curvature only depends on the space topology

If we stick to the metric space model, we can see how distances betwedn paimoriginate distances between spaces. Well known
distances are thidausdorff distancewhich measures how far two subsets of a metric space are from #wahand théVasserstein metrjc
defined between probability distributions on metric spaces. Another ititegesxample is th&sromov-Hausdorffdistance, which casts
the comparison of two spaces as a problem of comparing pairwise distancthe spaces. Equivalently, the computation of the Gromov-
Hausdorff distance between spaces can be posed as measuringdhedisaused by embedding one metric space into another, that is,
evaluating how much the metric structure is preserved while mapping a sitaghe other. By considering different metrics between points,
we get different notions of metrics between spac&@®fnov et al. 2006Bronstein et al. 2010

Mathematics gives the whats and whys. From the mathematical point of view, understanding and managing albtiwepts listed above
require a background in Differential Geometry and Topolady Carmo 1976Guillemin and Pollack 197Hirsch 1997. We will discover
how to model a shape as@pological spac@nd ametric spacewhat(Riemannian) manifoldare useful for, the precise definitions of widely
used terms such @godesicisometry curvature and how they relate toonformal geometrgnd the highly-cited.aplace-Beltrami operator
[Jost 2005 Reuter et al. 2009Zeng et al. 201p We will see how these notions are fundamental to analyse shaperfiesmnd compute
shape invariants. Having this background in mind, we will analyze all netidrsurface properties and metric invariants listed above, from
the theoretical and the computational point of view.

The how-to in applications: surface correspondence, symmetry detection and intrinsic shape description. At this point, we will

be able to show how the surveyed concepts were applied to solve differdiems, namely symmetry detection, surface correspondence
and intrinsic shape description. Concerning symmetry detection, we ¥eifltiee[Kim et al. 2010, where geodesics distances and conformal
mappings are used to generate symmetry invariant point sets and slatiace self-isometries, that is, intrinsic symmetries. Concerning
surface correspondence, reference works willliprhian and Funkhouser 20Dvhere differential and conformal geometry give rise to a
voting scheme that identifies corresponding points which are consistémisemetric mappings of large surface regions, aBdr et al.
2009, where diffusion geometry and the Heat Kernel Signature are usddtéxt repeated structure within the same shape and across a
collection of shapes.

4.2 The mathematical notion of similarity between shapes, and the role of shape descriptors

If we push further the idea of measuring the distortion of properties whlestorming a shape into another, we get the concept behind the
Natural pseudo-distancé et us assume now that a shape is a space endowed with a real fundttion describes some shape properties. To
compare two shapes, we can imagine to transform one shape into theasttheheck how much the properties of the original shapes have
been preserved/distorted; this amounts to measure how much the vialheseaal function representing those properties have been altered.
The Natural pseudo-distance offers a framework in which we canipldgferent properties, in the form of different real functions, sd@
measure shape (dis)similarity up to different notions of invariance.

Having defined a proper notion of distances between shapes, thermprbatebeen addressed of defining shape descriptors which are stable
under perturbations of the shape defined in the distance space. Hsespibrs includsize functionswhich have been proven to be stable
under the natural pseudo-distance, and the famipeo$istent homologtpols. These signatures are able to naturally combine the classifying
power of topology with the descriptive power of geometry, and have sedlelation with other popular tools suchReeb graphswhich

have their roots in the same theoretical settings.

Mathematics gives the whats and whys. At this point, we will need to further explore the mysteries of mappings betvwepological
spaces, that is, the notions lsdbmeomorphismand diffeomorphismbetween topological space&ijffiths 1976 Fomenko 199 Basic
notions of Algebraic Topology will have to be introduced, starting from tbgom of simplicial complexesand going througiomology
[Willard 1970 Engelking and Sielucki 1992Massey 1967Hatcher 2001L. We will see howMorse Theoryelegantly bridges geometrical
properties of shapes with their topologMilnor 1963 Edelsbrunner and Harer 2008Having this background in mind, we will show how
all these mathematical concepts form the basis for the definition of distéeteeen shapes (e.g. the Natural pseudo-dist&mosihi and
Mulazzani 1999 Donatini and Frosini 204y, and the computation of shape descriptors as those listed aboveysiz®hs, persistence
diagrams, Reeb graphs).

The how-to in applications: We will overview shape description at the light of the persistent topolagynéwork, with particular attention
to persistent homologyHdelsbrunner and Harer 200hd barcodesGhrist 2008. Then, we will introduce size theoryfosini 1990 Frosini
1997, Frosini and Landi 200land considerBiasotti et al. 2008aBiasotti et al. 201], which use persistent topology and multidimensional
size functions for retrieving 3D objects in database, according to diffsimilarity criteria and invariance concepts. Finally, we will overview
the use of Reeb graphR¢eb 194pin the shape analysis, description and retrieval ar&minjagawa et al. 199Hilaga et al. 2001Dey and
Wang 2011



4.3 Conclusions

At the end of the course, some case studies taken from recent stelpsigcontests (e.g., the SHREC 2012 Track on Stability on Abstract
Shapes) will offer us the possibility of further reasoning on what Matt&® has done and still can do for shape analysis.

As Mathematicians doing research in a world where disciplines (fortundtale blurred boundaries, we will also try to give some advice
on how to make mathematicians and other scientists get on well with each thiteis, how to talk to each other — and geutaderstand
each other. We hope that, at the end of the course, attendees will hakeaam how to find the right mathematical tools that match a bright
intuitive idea, and how to strike a balance between being theoretically rig@od offering computationally feasible solutions... possibly
keeping our guide on their desks.
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v motivation
v"mathematics and shape analysis challenges
— shape properties and invariants
— similarity between shapes
v mathematical guide (Part 1)
— topological spaces, functions, manifolds
— metric spaces, isometries, geodesics, curvature
— Gromov-Hausdorff distance
v concepfts in action (Part 1)
— symmetry detection
- surface correspondence
- shape characterization
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outline ...
{

R

v mathematical guide (Part 2)
— simplicial complexes
— basics on algebraic topology and homology
— Morse theory
— natural pseudo-distance
v concepts in Action (Part 2)
— persistent topology
— Reeb graphs
v discussions and trends
v conclusions

L’ g 05/08/2012 Overview 3

where are we now?
£

<)

v technology today
— hardware for visualizing 3D and 3D acquisition
technologies: “3D on the desktop”
— computer networks: fast connection, low cost

— 3D printers: not only mock-ups but even end
products

rendering, acquiring, transmitting,
“"materializing” 3D content is now feasible in
specialized as well as unspecialized contexts

|Z" 05/08/2012 Overview 4

3D medict!%

v non professionals
— 3D social networking
— “broad semantic context”

v professionals
— Product Modeling
— Design
Cultural Heritage
— Gaming
— Simulation
~ Medicine
Bioinformatics
— Architecture
— Archeology

82
A!

\.Z’ 05/08/2012 Overview

... how to analyse,
describe, process,
organize, navigate, filter,
share, re-use and re-
purpose, this large
amount of complex
content ¢

-?}’ 05/08/2012 Overview 13
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Mathematics and shape analysis challenges

w,,,
8

what does “shape” mean? @
v "...all the geometrical information that | o
remains when location, scale, and rotatfional
effects (Euclidean transformations) are
filtered out from an object” [Kendall 1977]

fdwd,

...uhmmm... NOT sure about this...

Overview

|Z" 05/08/2012

what does “shape” meon?fw,

v 4...the form of something by which it can be |
seen (or felt) different by something else”

[Longman Dictionary of Contemporary
English]

b e 1; a
4 That sounds nice but... .' @ "
what do “similar” and &' s
“different” mean? 9, LR
It seems like a chicken &, & o
- + 11
and egg situation... o 8 & g

o, ¥ o,

9

Overview

shape, similarity & the observer ..

@)
v things possess a shape for the observer, in I

whose mind the association between the
perception and the existing conceptual
models takes place [Koenderink 1990]

v similarity is a cognitive process, depending
on the observer and the context

Overview

|Z" 05/08/2012

shape and view poinfslﬂ

E
B

—————{ WponleRingand Pllars’
Guido Moretti's sculptures

\.Z’ 05/08/2012
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Overview
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different flavours ..
i

VW =3

&
geometric congruence

Functional equivalence

structural equivalence

“class" equivalence

[ g 05/08/2012 Overview 13

different flavours ..
4

R

Isometric transformation

elastic deformations and

affine fransformation

1§

4 7 05/08/2012 Overview 15
-4

images from h | © Disney copyright. al rights reserved

infuition vs mathematics ..
4

L

congruence

two objects are congruent if one can be
tfransformed into the other by rigid movements
(translation, rotation, reflection — not scaling)

X

[ g 05/08/2012 Overview 16

intuition vs mathematics ..
@

similarity: )
two geometrical objects are called similar if one
can be obtained by the other by uniform
stretching . Formally, a similarity of a Euclidean
space S'is a function f: S —> S that multiplies all
distances by the same positive scalarr, so that:

d(f(0), fO)) = rd(x,y),vx,y €S

4 :’ 05/08/2012 Overview 17

intuition vs mathematics ..
By |

E oy

an affine transformation is a deformation
that map straight lines into straight lines
it doesn't respect lengths or angles

it preserves all affine combinations (i.e., linear
combinations in which the sum of the coefficients
is 1)

% :’ 05/08/2012 Overview 18

mathematics: shape description and similarity ..
P2

Y |

similar shapes with respect to what?

shape descriptions, to code the aspects of
shapes to be taken into account and manage
the complexity of the problem

similarity in what sense 2

transformations among the shapes that we
consider irrelevant to the assessment of the
similarity

invariants or properties

i g 05/08/2012 Overview 19




shape and description ...
f)

shape descriptions reduce the complexity of%“'

the representation; their choice depends on
type of shapes and their variability/complexity
invariants or properties

shape descriptions ..
@

in general, a description could be just a set
of numbers...

example
shapes descriptions
l""‘J A measure somehow
n J»i/ relevant properties fre 1bohol 1]
'F (A of 3D objects...
/A
yo Y
e e — # edges area, genus...
point clouds matrices, graphs
‘3‘ 05/08/2012 Overview 20 '3‘ 05/08/2012 Overview 21
shape descripﬁonse,,“_ shape descripfions - properﬂesem
: WY
different shapes should have different invariance i
deSCFIpTIOHS Uniqueness

different enough to discriminate among shapes
a shape may not be entirely reconsfrucfed
from its description

example
edge length
TN and angle # edges
. ! ]
medial axis )\.\“}
\3‘ 05/08/2012 Overview 22 '3‘ 05/08/2012 Overview 23

stability to noise
sensitivity fo global/local features

invariance ..
by |

invariance = the descriptor does not
change for a given object under a class of
transformations

a property P isinvariant to transformation T

shape descriptions and similarity ..
similarity in what sense 2 |
defining appropriate similarity measures between
shape descriptions

Opplled to an ObjeCT o iff descriptions real numbers
P(T(0)) = T(P(O
(T(0)) = T(P(0)) _— -
I dist(# {8 =d_match( || )
@ similarity
measures
example % -
e " metric
semi-metric
boundary length histograms,
matrices, graphs RN
\):.‘ 05/08/2012 Overview 24 |,§ 05/08/2012 Overview 25




things are not that easy... ..

e,
. B i@i
v the simple examples we have shown are

clearly not enough to deal with the DON’T PANIC

complexity at hand... this is where
Mathematics comes into play!

‘/ Whot TOOIS? g r CZ: ((mnnun\
) S gaiiometry 28 IR 28 Taplace Beltrani &
- topological spaces _ ' m:mu.mnt"“'“t::::*i'&:?lgﬁeqh:vale‘x‘ié“e ﬂr.“:;éw h
— Riemannian surfaces and metrics computationale, i invarikSE Zgroup ,(
. mrfmé “Immemxmyp}mmomat em tlcs ' &
— distances and measures Ut enptic }1 d.uu,,m,..,l\.q" 5
i s Q3 theor S 5 ‘
— algebraic topology 3 g A 2 manifold 3 \\4
. . 4 g R =
— differential geometry and topology = 3 g A

— Morse theory

¥ g 05/08/2012 Overview 26 i :’ 05/08/2012 Overview 27




<:ontent’{M
. . . . L
The Hitchhiker's Guide to the Galaxy mathematical concepts
. topological
of Mathematical Tools for Shape opologiedispaces
” homeo- and diffeomorphisms
Analysis manifolds
metric spaces
» geodesic distances
'/. SlGGRAPH 20]2 COUrse Notes Riemannian surfaces
curvature
Mathematical Guide (part 1) Laplace-Beltrami operator
Gromov-Hausdorff distance
conceptsin action
surface correspondence
- symmetry detection
;“# Q";g intrinsic shape description
%;D—IL‘.‘; \g 05/08/2012 mathematical guide - part | 2
content topological space _..
i3 7
mathematical concepts ’ a topological space is a set X together with ™
*ODO'OQ'CO'SD?CGS a collection T of subsets of X, called open
homeo- and diffeomorphisms . . . . .
sets, satisfying the following axioms:
manifolds ying 9 O
metric spaces X0erT
geodesic distances any union of open sets is open e;@
Riemannian surfaces any finite intersection of open sets is open
curvature ! the collection T is called a topology on X
Laplace-Beltrami operator .
Gromov-Hausdorff distance Why Topologlcol Spc‘ces2
to represent the set of observations made by the
observer (e.g., boundary, interior, projection,
contour);
to reason about stability and robustness
.a 05/08/2012 mathematical guide - part | 3 ,g 05/08/2012 mathematical guide - part | 4

continuous function _..
£

=

let X,Y topological spaces an arbitrary
subset of R™

f : X—> Y is confinuous if for every open set vV ¢
Y the inverse image f~(V) is an open subset of X

why functions?
to characterize shapes
tfo measure shape
properties
to model what
the observeris 2
looking at ¥ v
to reason about stability
to define relationships (e.g., distances)

mathematical guide - part| 5

.:’ 05/08/2012

smooth function ..
4

R

let X be an arbitrary subset of R™; f : X— R™
is called smooth if vxeX there is an open set
UcR" and a function F: U-R™ such that

F = fix on XnU and F has continuous partial
derivatives of all orders

mathematical guide - part| 6
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homeo- & diffeo- morphisms{M

manifold

s,
k2

. (N R R RV
a homeomorphism between two i manifold without boundary )
topological spaces X and Y is a continuous a topological Haussdorff space M is called a k-
. N . . . 1 dimensional topological manifold if each point meM
bijection h: X—Y with confinuous inverse h admits a neighborhood U;cM homeomorphic to the
open disk D¥ = {xeR¥ ||x| <1} and M = Uy U;
h 1)14::{4:/1 manifold with bOUndOry
a topological Haussdorff space S is called a k-
dimensional topological manifold with boundary if
each point meM admits a neighborhood U;cM
i . \ homeomorphic either to the open disk
‘ e A Dk = {xeR¥ ||x| < 1} or the open half-space R¥~1 x
given Xc R™ and YcR™, if the smooth (v eR | y20} Lnd M= Uy Us
function f: X— Y is bijective and f~1 is also
smooth, the function f is a diffeomorphism k is called the dimension of the manifold
.a 05/08/2012 mathematical guide - part | 7 \g 05/08/2012 mathematical guide - part | 8
smoothness and orientability .. examples _..
44 k2
P . 3 | . . B .,.ﬁ‘
transition functions 3-manifolds with boundary:
'rig{rgilf]glgi%/}l’O\Di#\n('poi:nuffﬁ%f}fm on a k-dimensional a solid sphere, a solid torus, a solid knot \
the homeomorphisms o; ;: ¢;(U; N U))—;(U; N U;) such
that ¢;; = ¢; N ;7! are called transition functions 2-manifolds:

smooth manifold
a k-dimensional fopological manifold with (resp.
without) boundary is called a smooth manifold with
(resp. without) boundary, if all transition functions
@, are smooth

orientability
a manifold M is called orientable is there exists an
atlas {(U;, ¢} on it such that the Jacobian of all

transition functions is positive for all intersecting pairs
of regions

.a 5/08/2012

mathematical guide

a sphere, a torus

2-manifold with boundary:
a sphere with 2 holes,

single-valued functions (scalar fields) ’\)
1 manifold: Q

acircle, aline
\g 05/08/2012 mathematical guide - part | 10

parametric representation of surfaces ..,

R

regular parameterisation of a surface:
®:U c R? - R3
®d(u,v) €S, forall (u,v) €U
d(u,v) = (x(u, v),y(w,v),z(u, v))

such that
0x 0x
u ov 0
6_y X a—y #10
u v 0
0z 0z
ou ov

mathematical guide - part| 1

.:’ 05/08/2012

metric space ...
#

|

a metric space is a set where a notion of
distance (called a metric) between
elements of the set is defined

formally,

a metric space is an ordered pair (S,d) where S is
asetand d is a metric on S (also called distance
function), i.e., a function

d:SxS-> R
such that vx,y,z € S:
d(x,y) = 0;
d(x,y) = 0iffx =y
d(x,y) = dy,x);
d(x,2z) <d(x,y) +d(y,2)
\3’ 05/08/2012

non-negative)
identity)
symmetry)

triangle inequality)

mathematical guide - part| 12




spaces and properties

an isometry is a bijective map between
metric spaces that preserves distances, that
is

f:X > Y, dy(f (), f(x2)) = dx(x1, %)

looking for the right metric space...

the Euclidean distance d(p,q@) = Xit;/(q; — p;)?
geodesic distances, diffusion distances, ...

§ a 05/08/2012

mathematical guide - part | 13

[w‘%

B

geodesic disfc:mce’(M

?iven ¢ aregular surface parametrization, the >
irst fundamental form is defined as
ds? = Edu? + 2Fdudv + Gdv?

X 0|2 a0 AP 0|2
with £ = |30, F = 5250 6 = [

the arc length of a curve y is given by fy ds
minimal geodesics: shortest path between two
points on the surface p

geodesic distance between P
and Q: length of the shortest path
between P and Q

geodesic distances satisfy all
the requirements for a metric,
including the friangle inequality

,g 05/08/2012

mathematical guide - part | 14

Riemannian surfaces .,
{

a conformal structure is an atlas of the
surface such that angles among tangent
vectors can be coherently defined on
different local coordinate systems
a surface with a conformal structure is
called a Riemann surface
a Riemannian surface carries the structure of a
metric space whose distance function is the
geodesic distance
(uniformization) any simply
connected Riemann
surface is either conformally
equivalent to:

the open unit disk

the complex plane

the Riemann sphere

mathematical guide - part| ﬁ

§ a 05/08/2012

B

Riemannian surfaces .,
B

B

a Riemann surface is a complex manifold of ™
complex dimension one

a 2-manifold (real) can be turned into a

Riemannian surface iff it is orientable and

metrizable

as a consequence Mobius strip, Klein bottle,

projective plan don't admit a conformal

structure

,g 05/08/2012

mathematical guide - part | 16

invariance and isometries

a property invariant under isometries with
respect fo a Riemannian metric is called an
intrinsic property
examples:

the first fundamental form

the Gaussian curvature K

the geodesic distance

the Laplacian operator

.:’ 05/08/2012

mathematical guide - part| 17

s,
£

=

principal curvatures ..
#

|

the principal curvatures measure the
maximum and minimum bending of a
surface at each point along lines defined by
the intersection of the surface with planes
containing the normal

,:’ 05/08/2012

mathematical guide - part| 18




Gaussian and mean curvature .,
B

given k, and k, the principal curvatures at a )|
point surface
Gaussian curvature K = kqk,
mean curvature H = (kg + k;)/2
according fo the behavior of the sign of K,
the points of a surface may be classified as
elliptic
hyperbolic
parabolic or planar

mathematical guide - part | 19
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e |

examples ..
B

!
\ W
‘l&\.\@%\‘\‘{\s

T
.

mathematical guide - part | 20
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Laplace-Beltrami opercfor{ﬂ

B

continuous case

Af = div(gradf)
Laplacian eigenvalue problem

Af = -Af

orthonormal eigensystem
B ={Anyd)li  AYi =AY
A= <. i 2. €40

§ ;’ 05/08/2012

mathematical guide - part | 21

s,

discrete Laplacian operator

k..u_
k-

A= = 3wy [ 700 - fip)]

! ENG)
N(i) index set of 1-ring of vertex P;
f(p;) function value at vertex pPi
d; ~massassociated with vertex p;

Wij edge weights
\,:’ 05/08/2012

mathematical guide - part | 22

discrete geometric Laplacian _..
£

=

Desbrun et al. (1999)
cot(a;;) + cot(f;;) .
Wy = % di = alif3
the cotangent weights take into account the angles opposite

fo edges, the masses take intfo account the area around
vertices

Meyer et al. (2002)
Cl‘; = a;(i)
cotangent weights, masses considering the Voronoi area
Belkin et al. (2003, 2008)
weights constructed using heat kernels
Reuter et at. (2005, 2006)
weak formulation of the eigenvalue problem

(Af i 2o = =L @0 2
with ¢; cubic form functions

mathematical guide - part| 23

.:’ 05/08/2012

metrics between spaces ..
£

)|
from distances between points to distances
between metric spaces

the Gromov-Hausdorff distance poses the
comparison of two spaces as the direct
comparison of pairwise distances on the
spaces; equivalently, it measures the
distortion of embedding one metric space
into another

mathematical guide - part| 24
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Gromov-Hausdorff disfc:mc:e!M properﬁes{m
. BEE . . B
let (X; dy), (Y;dy) be two metric spaces and the Gromov-Hausdorff distance is
C c X x Ya correspondence parametric with respect to the choice of
the distortion of Cis: metrics on the spaces X and Y
dis(C) = sup |dy(x,x") — dy (¥, y)I common choices
a0
@xhyHee . Euclidean distance (estrinsic geometry)
the Gromov—HGUSdorffldlsTonce 1S geodesic distance (intrinsic geometry) or,
don(X,Y) = EiIledl'S(C) alternatively, do(l)ffusmn distance
@ (57) = ) () ~ i ()
. . . i=0
variations: Lp GfomOV‘HOU§dorff distances where (4;,3;) is the eigensystem of the Laplacian
and Gromov-Wasserstein distances operator and t is time
.3‘ 05/08/2012 mathematical guide - part | 25 \:’ 05/08/2012 mathematical guide - part | 26
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conceptsin action
surface correspondence
symmetry detection
intrinsic shape description
\3‘ 05/08/2012

mathematical guide - part | 28

surface correspondence ..
2

problem: finding correspondences between |

a discrete set of points on two surface

meshes A ;
extrinsic vs intrinsic ;
correspondence

=

why: medical imaging, attribute fransfer,
surface ‘rrockmg

mathematical guide - part | 29
Courtesy of Michael Bronstein

.3‘ 05/08/2012

intrinsic correspondence [Lipman and Funkhouser 2009]

s,

=

looking for intrinsic correspondence means finding
corresponding points such that the mapping
between them is close to an isometry

idea: isometry

any genus zero surface ]
can be mapped ‘
conformally to the unit \
sphere (I)]
-1
D,0g0®,
_

§
[
1-1 and onto conformal map of a sphere to itself (Mobius map):

uniquely defined by three corresponding points

mathematical guide - part| 30
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intrinsic correspondence [Lipman and Funkhouser 2009] ...,
£

"’m—m‘
1) sampling points: local .
maxima of Gauss curvature & 3) compute the Mobius
(geodesically) farthest point transformation that aligns a triplet in
algorithm the common domain

“KN} o
W W TS

Point distribution  Mid-Edge Flattening Mobius Voting

2) discrete conformal flattening ~ 4) evaluate the intrinsic
to the extended complex plane  deformation error and
build a fuzzy
mathematical guide - parti  COITESpONdence matrix

§ ;’ 05/08/2012

intrinsic correspondence [Lipman and Funkhouser 2009] ..,
@
5) produce a discrete set
of correspondences . “".‘
,‘x 2\ ¥
—wme E
~ A
. e /1
X . e
- >~/
.4
Vo Proceoning | Comeaatmionces
pay attention to...
what about higher genus surfaces? S
drawbacks of the discrete (linear) flattening technique
\,:’ 05/08/2012 mathematical guide - part | 32

symmetry detection

ff“}
problem: detecting symmetries on a surface |
mesh

well studied problem in perceptual psychology,
computer vision, computer graphics

extrinsic vs intrinsic symmetries

d
why: compression, completion, matching,
beautification, alignment...

§ ;’ 05/08/2012

mathematical guide - part |

33
Courtesy of Michael Bronstein

global intrinsic symmetry detection im et al.2010] ...
#

e |

looking for intrinsic symmetry transformations means ]
finding isometric fransformations that map a surface
onto itself (self-isometries); cf. the correspondence
finding problem

we have: M orientable, genus zero surface

we look for: f: M — M intrinsic symmetry
orientation-preserving isometries are related to
conformal maps; orientation-reversing isometries are
related to anti-conformal maps
ideas similar to the work just seen: here the anti-
Mobius group (Mobius maps plus Mobius maps
composed with a reflection) comes into play

,,:’ 05/08/2012
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global intrinsic symmetry detection kim et al.2010] _..
b

=

1) sampling points: symmetry invariant sets S1 (coarse) and $2 (dense)

ﬁDEA: Given a symmetry invariant function ®: M — R, the set %
its critical points is a symmetry invariant set that satisfies f(S) = S
v IDEA: The Average Geodesic Distance (AGD) and the Minimal
Geodesic Distance (MGD) are symmetry invariant functions

Duga (p) = /w dg(p.q)dvol s (q)

Si={pe M|V |p Paga =0}

Pt () = Brga (P51} = min dg(p.q)
gES,

S = {pEM|V |pBypes =0} j

mathematical guide - part| 35
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global intrinsic symmetry detection im et al.2010] ...
#
|
1) sampling points: symmetry invariant sets ST (coarse) and S2 (dense)
2) discrete conformal flattening to the extended complex plane

3) compute anti-Mobius transformations that align triplets and
quadruplets of $1in the common domain

4) apply th transformations to $2 and evaluate the intrinsic deformation
error (based on geodesics)

5) use the best transformation to extract correspondences within the
symmetry invariant set $2

pay attention to...

Mone v' symmetry invariant functions
have to be smooth!
v" what about partial and small
symmetries2

mathematical guide - part | 36
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deformable shape characterization .
£
B
problem: describing intrinsic shape
properties, and deriving signatures

Courtesy of Michael Bronstein

why: shape registration, global and partial
matching, ...

§ a 05/08/2012

mathematical guide - part | 37

intrinsic shape description (sunet al.2009] ...
#
ey
heat equation, governing the distribution of heat
from a source on a surface X; initial conditions: heat
distribution at timet = 0:
a
(L\‘" N (’th u=0
the heat kernel Ki(z,y} is a fundamental solution
of the heat equation with point heat source at x
(and heat value at y after time t)
o0
Ki(wy) = 3 e May(a)gily)
i=0
N
3 el ()dily)
\,g 05/08/2012 mufhzefogi)calguide-parfl 38

intrinsic shape description sunet al. 2009]

¢t

time

Ki(z,y) = 3 e Mtg(a)ei(y)
=0

N
3 e M ()i (u)

=0
mathemafical guide - part | 39

§ a 05/08/2012

Courtesy of Michael Bronstein

infrinsic shape descripfion (sun et al.2009] ..,
&

=

heat kernel signature as a point description
over the temporal domain:
HKS(x):R* - R, HKS(x,t) = k:(x,x)

multiscale, informative, intrinsic, Iocollzed
sensitivity to topological noise 5 *

distance between signatures at scale [ty, t,]:

(x.x) — k(2 \)| 1/2
dp,. .. o) —( ’7 dlogr) '~
i)t ( Tk Gmar ) e
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Courtesy of Michael Bronstein

intrinsic shape description sunet al.2009] _..
7
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feature point detection ¥ ll ::'x

localizing repeated structures

. t differet scal

pay attention to... arcltteret scaies
multiscale... but how to handle time scale?

discretization and robustness issues
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about fopological spaces and functions
(<:1g<:1ir1){;f@?~;1
we could think of perceptions as pairs (X, f),
where X is a topological space and
f: X - RFisa (continuous) function

X represents the set of observations made by the
observer

for each observation x € X, f(x) describes x as
seen by the observer
topological spaces and continuous
functions allow us to talk about stability

so, what mathematical tools?
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basics on algebraic topology ...

@
algebraic topology associates algebraic

invariants fo each space so that two spaces
are homeomorphic if they have the same
invariants

approach: to decompose a topological
space into simple pieces that are easier to
study (e.g. to decompose a polyhedron into
faces, edges, vertices or a surface into
friangles)
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Mathematical Guide (Part 2)

basics on algebraic topology ...

R =

a combinatorial structure is generated by
the decomposition of the topological space

basic elements of the decomposition are

cells or simplices that are characterized by
combinatorial aspect: relations among the cells
of the complex

geometric aspect: related to their embedding in
the Euclidean space
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examples ...
R

R

cells complexes
a geographic map (which is
made of points, lines and regions)

a decomposition of a polyhedron into faces

| aNece

simplicial complexes
e.g., friangle meshes
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simplex ..
4

R

a k-simplex in a Euclidean space R™, with

n =k, is the convex hull of k + 1 affinely
independent points. A subset of these points
defines a simplex of dimension < k called
face.

H 3.
inR>:
L]
0-simplex .
1-simplex
2-simplex .
4-simplex
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simplicial complex .|

L

a (finite) simplicial complex K is a (finite)
collection of simplices so that
ifoeKandtis afaceof o, thentek

if 01,0, € K, then a;n g, is a face of both (that is,
two simplices can only meet along a common
face)

the dimension of K is the

highest among the dimensions

of its simplices
triangle meshes are 2-complexes
tetrahedral meshes are 3-complexes
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cycles and boundaries ..

B
let K be a simplicial complex of R*; a g-chain is a formal |
linear combination of g- simplices

boundary operator:
a
4[4 Ay, . Ag] = Z(—l)i (Ao, s Ai—1, Apy Ay o) Ag]
=0 4z

Ay ——— A,
01[Ag, A1l = [Ao] = [A4]
AD A1
0540, A1, A1) = [A1,4;] — [Ag, Az] + [Ao, Ar]
a chainis called a cycle if the boundary operator sends
it o zero

a chainis called a boundary if it is the image of a chain
of dimension greater by 1
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loops on a surface ..
by |
W

aloop (1-cycle) is a closed curve whose
initial and final points coincide in a fixed
point p known as the basepoint

% 3‘ 05/08/2012 mathematical guide - part Il n

simplicial homology ...

7

R =

the g-th simplicial homology group of K, Hg(K), is

the quotient group of cycles modulo boundaries
an element of Hy(K) is an equivalence class,
called homology class, of homologous g-cycles,
that is, cycles whose difference is a boundary

the rank of Hy(K) is called the g-th Betti number of

K, and it is a measurement of the number of

different holes in K
for 3D data the three Bettinumbers By, 1, and B,
count the number of connected components,
tunnels, and voids, respectively

the homology H.(K) is a topological invariant of K
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genus .

the genus g of a surface S without boundary is: )
half the first Betti number of §
the cardinality of a minimal set of mutually non-
isotopic loops which can be cut along the surface
without disconnecting it
any orientable surface without boundary is a
connected sum of g tori, where g is its genus,
g>0
the genus of a surface with boundary is the
genus of the surface S’ obtained by gluing a
disc onto each boundary component

the genus of a surface is a fopological invariant
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functions and critical points ..
4

"’b«.
given a smooth function f: M - R on a smooth manifold “

M, a point x is called
regular if the differential df, is surjective
critical if df, is the zero map

a critical point is called

non-degenerate if the Hessian matrix H of the second
partial derivatives of f is non singular at that point

critical points
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critical points ..
4

L

formally:
a point P is critical for f if:

of of of
— =0,— =0,...,— =0
8Xl(p) 32(|0) §k(P)

It is Morse if:

2

o°f
\Hf(p)\=faxj(p)¢o

If x is a non-degenerate critical point of f, the
number A of negative eigenvalues of H is called
the index of x
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critical points on a surface ..
@)

non-degenerate c. p.

degenerate c. p.
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Euler formula ..
pres |

E oy

#maxima — #saddles + #minima = x(S)
(differential geometry)

2n(v — e + f) = K(S)
(differential topology)

v—e+ f =y =2-2g
(algebraic topology)
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Morse theory ..
54

a function f is called Morse if all of its crifical ) o
points are non-degenerate

Morse theory studies the relationship
between a function’s crifical points and the
topology of its domain

it indicates when the topological type
changes and what kind of changes take
place

it provides a surface decompositioninto a
limited set of primitive topological cells,
defined by the surface critical points and
their corresponding index
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does any Morse function exist? .
3

on any smooth compact manifold there exist
Morse functions

Morse functions are everywhere dense in the
space of all smooth functions on the manifold

any Morse function has only a finite number of
critical points on a compact manifold

the set S of all simple Morse functionsis
everywhere dense in the set of all Morse
functions

examples of Morse functions on a smooth
manifold: height function, distance functions,
geodesic distance, etc.

4 3“ 05/08/2012 mathematical guide - part Il 19

Morse theory & critical points ..
4

Let C; = #{critical points of index i} and B; the
i-th Betti number of M; then
Weak Morse inequalities
Bi<G
Ti(=1)'C = Ti(=1)'B; = (M)
Strong Morse inequalities
Vi20, B; — Bimy + =+ Bo < C; — Cig + -+ Cy

#maxima — #saddles + #minima = y(M) = 2—2g
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Morse theory & critical point configuration .,
&

R

(Morse Lemma) In a neighbourhood of
each non-degenerate critical point P, the
function f can be expressed as:

where 2 is the index of the critical point
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2-manifolds .,
4

B
22
f=—x"+y
maximum saddle
A=2 A=1
% 3‘ 05/08/2012 mathematical guide - part Il 22

3-manifolds ...
e

=y

f=+x?+y?+2° f=ox2-y?-7?

minimum maximum

A=0 A=3

f=—xX+y*+2° f=—xX"-y*+2°

A=1 A=2

saddle ' saddle
an
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Morse theory & critical points ..

R =

let f: M—R be areal valued function and let

[a,b] = R be an interval non containing critical
values of f; then the level sets f~1(a) and f~1(b) are
diffeomorphic

denote M* ={p € M|f(p) < x} and P a critical point
such that f(p) = c; then:

Ve > 0suchthat f~' [c —¢,c +g]
contains no other critical points

of f, the set M¢*¢ has the homotopy
type of M¢~¢ with a A-cell attached
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Morse theory & shape decomposition _..|

R

Theorem (CW complex decomposition)

let S be a smooth compact manifold embedded
in an Euclidean space. Letf f: S5R be a smooth,
real valued, Morse function on S. Then S is
homeomorphic (i.e. topologically equivalent) to
a cell complex of dimension i for each critical
point of index i
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attaching cells: a torus ..
4

pictures from http:/ /www.es.rugnl/ ~gert/topologyhtml
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Morse theory does not say ...,
7

R

that all smooth functions on S have the
same number of critical points

if the cell complex obtained using a given f
is the "best possible” (i.e. it has the fewest
number of cells)
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homology, Morse theory, and shape
i R
. . descnphon{@l
medial axis transform (Blum 1967)
shock graphs (Kimia, Tannenbaum, Zucker 1995)
surface networks (Pfaltz 1976)

skeletons and centerlines (Sethian 1985,
Bloomenthal 1991)

apparent contours (Haefliger 1960, Pignoni 1991)
size functions (Ferri, Frosini 1990)
barcodes (Zomorodian et al 2004)

Reeb graphs (Reeb 1946) & contour trees
(Boyell & Ruston1963)
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about distances (again)

to assess how far two perceptions are
a notion of metric between topological spaces

equipped with functions is needed | l

natural pseudo-distance: shapes are similar if
there exists a homeomorphism between the
spaces that preserves the properties conveyed
by the functions
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natural pseudo-distance ..
let H be a (subset of) the setf of all P
homeomorphisms y: X — Y, the natural size
pseudodistance §((X, ¢), (Y, ¥)) is

8069, 01 9)) = £ = {Thren®r 28

®(7) =maXep_x H¢(P)_ W(J’(P)X‘m
& is small iff 3y that induces a small change on
the function f, that is, if there exist an
homeomorphism mapping one space into the
other while preserving the properties conveyed
by the real function

how to compute ite Stay tuned...

e

u,g’ 05/08/2012 mathematical guide - part Il 30




referenceslﬂ
S. Willard, General Topology, Addison-Wesley Publishing Co, 1970 R
R. Engelking and K. Sielucki, Topology: A geometric approach, Sigma
series in pure mathematics, Heldermann, Berlin, 1992
A. Fomenko, Visual Geometry and Topology, Springer-Verlag, 1995M.
W. Hirsch, Differential Topology, Springer, 1997
H. B. Griffiths, Surfaces, Cambridge University Press, 1976
V. Guillemin and A. Pollack, Differential Topology, Englewood Cliffs,
NJ:Prentice Hall, 1974
\]/*é.él}/\qssey, Algebraic topology: An Introduction, Brace&World Inc.,

A. Hatcher, Algebraic Topology, Cambridge University Press, 2001
J. Milnor, Morse theory, Princeton University Press, New Jersey, 1963
C. Kosniowski, A First Course in Algebraic Topology, Cambridge
University Press, 1966

P. Frosini, M. Mulazzani, Size homotopy groups for computation of
Qaur]%(g%ze distances, Bull. of Belgian Mathematical Society, 6:455-

P. Donatini, P. Frosini, Natural pseudodistances between closed
surfaces, J.| of European Mathematical Society, 9(2):231-253, 2007

mathematical guide - part Il 31

4 3’ 05/08/2012

content ..,
{’)’«m"
concepts in action
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Morse Theory and computational topology ...

max
f a shape is a pair
X, f). that is, a
topological space X
endowed with a real
function f: X - R
describing its
properties

mathematical guide - part Il 33
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persistent topology ...
P2

fopological events [e.g. birth, merge of connected |

components] occur while sweeping X through f,
i.e., when analysing X as the evolution of ifs sub-

levelsetsX, = {P eX: f(P) < t}, te R
max
X f
merge
death)
birth
birth miln
.3’ 05/08/2012 mathematical guide - part Il 34

persistent Topology!%‘1
topological events [e.g. birth, merge of connected | o
components] occur while sweeping X through f,
i.e., when analysing X as the evolution of ifs sub-
levelsetsX, = {P eX: f(P) < t}, te R

basic idea:
encode the lifespan of fopological events;
lifespan is proportional to the importance
of the features they represent: long events
stand for significant features, short events
stand for either details or noise
\:" 05/08/2012
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an historical perspective ..

different topological features: ]
size functions: [Frosini 1991], O-th degree
homology (connected components)
persistent homology: [Edelsbrunner et al. 2000],
higher degree homology (cycles)

from 1-dimensional to multidimensional

properties:
1-dimensional setting: f: X — R [Frosini 1991,
Edelsbrunner et al. 2000]

multidimensional setting: f: X —» R¥ [Biasotti et al.
2008]

i ,r, 05/08/2012
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an historical perspective ..
3

R

different topological features:

size functions: [Frosini 1991], 0-th degree
homology (connected components)

persistent homology: [Edelsbrunner et al. 2000],
higher degree homology (cycles)
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size functions ..
4

the size function € 4): {(w,v) € R:u < v} - N takes™
each (u,v)to the number of connected components
of X, that contain at least one point of X,,
that is,£(x ¢y (w, v) = number of connected components (0-
homology classes) born before u and still alive at v

W
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persistent homology (borcodes)ﬁ,‘
given the pair (X, f), consider the collection of nested R
lowerlevelsetsof f: X(f <w) = {x € X: f(x) S u};
measure the scale at which a topological feature (e.g.,
a connected component, a funnel, a void) is created,
and when it is annihilated along this filiration using
homology groups
encode this information as parametrized Betti numbers

. o . . — —
NINININ N
0. —— ]
B To— W2
b, i -
e —————]
y 48
1
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size functions and matching distance ..
the matching distance between size functionsis I
stable wrt noise and approximates the natural
pseudo-distance

2 7 . v
01 e 91 2‘3 matching J | et
- .

distance

rtathtc ri+atce’
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size functions and matching distance ..
By |

=y

stability theorem:
H(PY — (P)| < fime) Bva) S e
}rjza\)/(‘ lp(P) — #(P)| < € = dmaten{fim,p): b)) <€

small changes in the measuring functions imply small changes
in the size functions: robustness wrt perturbation of the data

lower bound for the natural pseudo-distance:
Let A be the value of the matching distance
between the two size functions £y, , e {,, Then

d((M,9),(N, ) 24.

there is a link between the comparison of size functions and the
comparison of shapes
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modularity ..

R =

parametric wrt the
choice of the space X

parametric wrt the
choice of the function f

ks
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size functions and view-based 3D retrieval

[Mortara et al. 2010] g

best view contour contour description
selection  exiraction based on curvature

a i : I

9
ﬂfu s 7
I ",/’\, \_“ b

~ " I
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silhouette silhouette description
mathemafRSSIGH Oy Osed on geodesics

an historical perspective ..
#

R

from 1-dimensional to multidimensional
properties:
1-dimensional setting: ¢ : X — R [Frosini 1991,
Edelsbrunner et al. 2000]

multidimensional setting: @
2008]

: X - R [Biasottiet al.

mathematical guide - part I a4
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multidimensional setting _...

L

why a vector-valued measuring function?
many properties are intrinsically
multidimensional (coordinates, colovur...);
alternatively, we may want to blend the
information of different one-dimensional
properties

X.oe1)  Xip2)  (X.es)
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multidimensional setting: (still) open issues ..
Iy

1’),«.
what is at stake -~ I ’
think of an algorithm I
to compute such stuff f=
. . . |
[Biasottiet al. 2011] g
and fest it in shape comparison | A I
WEEI I ES RS _ —
aooa 159 7 | 277 | 235412399 . (‘F -; gy
‘:’\ 1591000 7 77 1247112515 ‘ " K |
‘j 000} 342 1226312308 I ;i ?3 :} ?:}
2 0 I O HAENA
.S O DS PO OO PO IO i -
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Reeb groph‘,.‘_g

Reeb graphs store the evolution of the level ]

sets of the mapping func‘rio?

mathematical guide - part Il 47
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Reeb graph deﬁniﬁonk_,.‘_

given f: S>R defined on the surface S, the
Reeb graph of S wrt fis the quotient space
defined by “~":

(1, f (1)) ~ (x2, f(x2)) & f(x1) = f(x2) &x1,%, Are

in the same connected component of f~1(f(x,))

mathematical guide - part Il a8
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overview of RGs when the function f varies ..

’b,)“,
f values AT AT
L {
LI | U
: Ly
1 [ L ]
1 \ | v
- .
" =i ¥ 3
¥ \f
=5 / =
t N £, i
=/ barycenter / integral
geodesic
/ f
u . " o
height bounding sphere curvature
» center extrema
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iz
R

v Draw the Reeb graph with respect to the
height function f of the following shapes
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quiz - solutions ..
£

L
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RG properhesfﬁ

ﬁ)\, |

v it provides a 1D structure of the shape

v it describes the shape of an object under
the lens of the function f

v'nodes and arcs depend on the number of
critical points of f

v it may be computed in O(nlogn) operations

i :‘ 05/08/2012 mathematical guide - part Il o2

Reeb graph based representations Py
5

* Loy

v Reeb graph variations
— contour trees (simply-connected domains)
— component frees (gray-level images)
— centerline skeletons (geodesic distance from a
point)
v for shape matching

— Multiresolution Reeb graph (MRG), Hilaga et al.
2001

- augmented Multiresolution Reeb graph (aMRG),
Tung&Schmitt 2005

— Extended Reeb graph (ERG), Biasotti et al. 2000
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applications ..
7

v topology simplification ™ . oy
v shape analysis and undersiif Beia 4 o
v shape and body segmef &5 '5‘ B0 J;
v . &
v
v
v
v TR
v volume visualiza™ == £ .-
v scientific visualizd 4 . ,_3\
v rendering Giu l\m o
v X-ray cristallogrc - i

. . v .

ey & e

v analysing of time A\ﬂ e, u 4,

il
Al
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Discussions and open issues
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getting out of a maze ..
#

@Y

complex shapes, complex problems and...
mathematical concepfs...
what is the only maths you can't ever apply¢ The
one you don't know!

(Mario Pezzana, by way of Massimo Ferri)
we had a look at mathematical theories
and techniques for shape analysis,
description and similarity
but if we go back to shapes and problem:s,
are we sure that everything works ok?

let’s start by having a look to «realy world

i :’ 05/08/2012 discussions and open issues 2

complex shapes, complex problems ..
3

R

online repositories of 3D models

Google 3D Warehouse
http://sketchup.google.com/3dwarehouse/

¥ z“ 05/08/2012 discussions and open issues 3

complex shapes, complex problems ..
£

R

online repositories of 3D models

Google 3D Warehouse
http://sketchup.google.com/3dwarehouse/

3Dvia http:// www.3dvia.com/search/

M@ e i e e n a Com—

SEWOE
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W
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complex shapes, complex problems ..
By |

online repositories of 3D models r
Google 3D Warehouse
http://sketchup.google.com/3dwarehouse/

3Dvia http:// www.3dvia.com/search/

Turbosquid http://www.turbosquid.com/
*...search our stock catalog to get the 3D model you
want, or use our Custom 3D modeling service for made-
to-order 3D models. Join the world's top artists who use
TurboSquid 3D models in advertising, architecture,
broadcast, games, training, film, the web, and just for fun”

% :‘ 05/08/2012 discussions and open issues 5

complex shapes, complex problems ..
@&

Y |

Digital Shape Workbench v5.0
http://visionair.ge.imati.cnr.it/

an infrastructure offering shapes and software
tools

for Advarced 3D visubization based Resaarch

i ,g 05/08/2012 discussions and open issues 6
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questions&answers _..
i

R

do these approaches meet the
requirements of the mathematical methods
presented?

when and how is robustness really
guaranteed?

under what conditions do methods really
work?2

theoretical answers and benchmarking

4 :“ 05/08/2012 discussions and open issues 7

to sum up: theory says ... ...
B

3D shapes maybe very complex and there

are many concepts and foals, so...

... how to get out of this maze?

basics

the choice of a shape description despite
another depends on

type of shapes and their variability/complexity
invariants or properties

topological spaces and functions are necessary
to model the observer's perception and to
reason to reason about stability and perturbation
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pay attention to... .|

.. the right metric space I

rigid transformations (rotations, translations) L\_IJ <
Euclidean distances < -

isometries .
Riemannian metric
curvature (but unstable to local noise/perturbations)
geodesics, diffusion geometry, Laplacian operators, etc

localinvariance to shape parameterizations
conformal geometry

similarities (i.e. scale operations) [ _:J
normalized Euclidean distances L

affinity (and homeomorphisms) i

persistent topology £ -
Morse theory L
size theory
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pay attention to... ..

B

. to a suitable shape description
coarse coding (but fast)
histograms ;
maftrices 'III
articulated shapes -
medial axes

il
Reeb graphs

overall global appearance
sihouettes
if shape loops are relevant -

persistent topology
graph-based descriptions

x
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to sum up: benchmarking ...
SHape Retrieval Context
http://www.aimatshape.net/event/SHREC
an annual event to to evaluate the
effectiveness of 3D shape analysis algorithms
a multi-frack event spanning
different models: from watertight objects to triangle
soups, from abstract shapes to medical data

different tasks: from 3D retrieval to correspondence
finding and segmentation

DEMO
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http://www.aimatshape.net/event/SHREC

at the end of the day...
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THANKS FOR ALL THE FISH '. ~\’- L2

b
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Thank you for your attention!

discussions and open issues

= aqo®

i :’ 05/08/2012

o Ssn,

£
3




